1. Summary

AWA PA1003 25W valve amplifier. S.N. AL4518. Nov 2019
Three input channel PA amplifier. 7027A cathode biased PP stage - screen at B+ - cathode bias from 2x 12AX7 heaters in series.
1.5A fuse. Doubler on ??0V secondary using 1 N 3195 's; 90 uF 450 V caps, then 0.5 A fuse for $\sim ? 00 \mathrm{~V}$ HT to PP stage. 6V3 with 47R-GND-47R humdinger. Socket for Radio aerial/earth. Bass Normal/Cut switch. 10 section terminal block*. [MIC] Volume pot. Input socket. Phono [Radio] Vol pot. Phono [Radio] switch. Phono-[Radio] Tone pot. Extension switch*. Speaker vol pot*. Mains On switch. Monitor socket*. Front panel VU meter* and two 4-step switches *.

Output Transformer	Type No. 2426 ?000 25
	7 output winding sections 0,24R,40R,60R,120R,200R,300R,400R.
Power Transformer	Secondary turns ratios: 0-24-31-39-55-71-87-100\%. No interleaving.
	52424A CC5 (Bell ends look like from Ferguson).
	??0V @ ~?00mA (RD,RD); 6V3 ~3A (BLK,BLK);
	250-230-10-0V (YEL,OR,GRY,BLU)
	Upright with steel bell-ends. 100x80mm footprint. 115mm high.
POTs	Aerostat.
Caps	Ducon electros 483; Ducon poly 335; 376
	UCC EPB 28 1164 1864, PHT 175 265 and mustard 051H 095H;
Resistors	IRH 61 15 Z. 65 7
Valves	7027A x2 RCA USA AQ
	12AX7 2x Radiotron Australia JG 10, UM 22
Speaker	AWA 6.40A/15 50 230 DE5
Meter *	Kyoritsu VR-3P VU -20 to +3

Good general condition. Original condition, including valves, but vintage modified for VU meter and input switches. Some added internal wiring poorly located. Slight change to input heater wiring - cap to cathodes, 1 k 5 across series heaters. No bleed/balancing resistors on B+. Fuse in OPT feed. Mains switch contact poor. Modified Monitor parts and wiring and poor wiper on pot. All coupling caps leaky. One ss diode with some leakage.

2. Modifications

- Swapped contact on Mains switch.
- PT orange tap isolated and yellow tap taken to terminal strip. 275Vac MOV added across primary.
- Replaced humdinger with $82+820.4 \mathrm{~W}$.
- Replaced ss diodes with paralleled UF4007.
- Added secondary HT CT $5 \times 20 \mathrm{~mm}$ fuse.
- Removed rear panel Ant socket and replaced with DB9 monitor connector, and added 100:1 divider bleeds on VS1 and VS2, and connection to top of heater NTC. Caution that common cathode voltage should not exceed 30Vdc FSD for meter assembly (damage above 42 Vdc).
- Removed side input jack and socket. Isolated front panel input socket.
- Replaced coupling caps. Preamp stages with 10 nF and output stage with 22 nF , to restrict low frequency bandwidth. Inserted 10k grid stoppers for output stage.
- Reconfigured OT for 11 ohm output, and added Speakon speaker socket (removed B+ 3AG rear panel fuse).
- Added LC filter stage to VS1 (and hence screen).
- Removed OT feedback to PI, and used F/B winding for internal speaker. Reconfigured speaker and monitor wiring.
- Removed radio socket and wiring.
- Replaced electrolytic caps.
- Disconnected front panel extension switch. Disconnected rear panel Bass Cut switch. Front panel Phono-MIC switch used as Bass cut switch.
- Added VU meter circuitry for peak hold and to display relative dBm (where $0 \mathrm{dBm} \sim 12 \mathrm{~W}$ in to 16 ohm).
- Added 200D7 NTC in series with V1-V2 heater string as output stage common cathode bias resistor.

3. Measurements

Megger test 1 kV on PT mains and HT secondary ($>2 \mathrm{G}$) and OT primary ($>1 \mathrm{G}$).

PT:

- Pri: BLU-YEL 12.1 ohm (YEL-OR 1.1 ohm; OR-GRY 10.4 ohm; GRY-BLU 0.4 ohm)
- Sec: RD-RD 9.2 ohm
- 237Vac mains on Gry-YEL: 157V HT unloaded; 6.77V heater unloaded, 6.58 V heater loaded.

Voltage rail regulation.

Rail	238 V 0.44 A	
VS1	$370 \mathrm{~V}(430 \mathrm{Vpk})$	
VS2	$248 \mathrm{~V}(340 \mathrm{Vpk})$	
Cathode	$24.1-\mathrm{V}(65+69 \mathrm{~mA})$	
NTC	4.3 V	

12VAC 50 Hz nominal applied to output transformer half-primary

Winding	Voltage rms	Turns ratio; Impedance for 5.0K pri; Spec level; Notes		
Pri P-B+	11.39			
Sec: GRY to PUR	6.44	$3.54 ; 400 \Omega ;$	$400 \Omega ;$	1000 T
Sec: GRY to BLK/WH	5.555	$4.10 ; 297 \Omega ;$	$300 \Omega ;$	863 T
Sec: GRY to RED/WH	4.563	$4.99 ; 201 \Omega ;$	$200 \Omega ;$	709 T
Sec: GRY to OR	3.533	$6.45 ; 120 \Omega ;$	$120 \Omega ;$	549 T
Sec: GRY to BLK	2.492	$9.14 ; 60 \Omega ;$	$60 \Omega ;$	387 T
Sec: GRY to GRN	2.022	$11.27 ; 39 \Omega ;$	$40 \Omega ;$	314 T
Sec: GRY to YEL	1.481	$15.38 ; 21 \Omega ;$	$24 \Omega ;$	230 T
Sec F/B	2.284	$9.97 ; 50 \Omega ;$		355 T

Output transformer primary DC resistance: $96+101 \Omega$
Four sections of windings each have about 16% of turns, but there is a minor turns difference between them (when their tap wires were separated and separately measured). The measured signal voltages (no load), DCR, and calculated signal currents for each winding section (when the 60$120 \Omega$ winding is driving 16.5 V in to a resistive load) are:

- 24 to $60 ; 1.02 \mathrm{~V} \quad 615 \mathrm{~m} \Omega \quad 1.380 \mathrm{~A}$
- 60 to 120 ; $1.05 \mathrm{~V} \quad 655 \mathrm{~m} \Omega \quad 1.416 \mathrm{~A}$
- 120 to 200 ; $1.035 \mathrm{~V} \quad 685 \mathrm{~m} \Omega$ 1.392A
- 200 to 300 ; $0.992 \mathrm{~V} \quad 680 \mathrm{~m} \Omega \quad 1.335 \mathrm{~A}$

Connecting those 4 winding sections in parallel provides an 11Ω nominal output that uses 48% of the secondary turns. At full rated output of 25 W , the likely span in generated winding currents into a common resistive load is about 0.08 A (or 6% of nominal).

Input stage signal gain 1.16/0.0204 $=57 \mathrm{x}$
2nd stage signal gain $1.45 / 0.011=132 \mathrm{x}$ (tone max) ; 1.1/0.011 $=100 \mathrm{x}$ (tone min)
Output sine clip in to 16Ω load at 17.4 Vrms (19W), and 11.4 Vrms in to 8Ω load (16 W). Clipping nearly symmetrical. Cathode voltage rises from circa 24 to 28 V , and NTC voltage increases a bit even though cathode currents increase $5-10 \mathrm{~mA}$. VS1 and VS2 sag only about 10 V . VU meter reads about +0.5 dB

Output noise (no input, pots min) 1mVrms
With tone switch (up), the tone pot only influences above 300 Hz .

- Pot at min gives -3 dB at 170 Hz and 3 kHz , and -16 dB at 10 kHz .
- Pot at mid gives -3 dB at 150 Hz and 3 kHz , and -9 dB at 10 kHz .
- Pot at max gives -3 dB at 170 Hz and 8 kHz .

With tone switch (up):

- Pot at min gives -3 dB at 170 Hz and 4.5 kHz , and -12 dB at 10 kHz .
- Pot at mid gives -3 dB at 400 Hz and 9 kHz , with 2 dB hump at 3 kHz .
- Pot at max gives -3 dB at 700 Hz and 8 kHz , with broad hump at 3 kHz .

VU Meter: FSD with 212uA. Resistance $=1.44 \mathrm{~V} / 0.000212=6 \mathrm{k} 8$.
VU meter response modified with series non-linear resistance from 3V6 zener string with resistors used to align with sinewave power level in dB. Output waveform half-wave rectified with high voltage germanium OA81, and 4u7 filter across meter. Measurement with Vdc=Vpk applied.
$\mathrm{VU}+3 \mathrm{~dB}$ reading at 29.1 Vpk . Equivalent power level is 26.5 W , or 44.2 dBm , $\mathrm{VU}+2 \mathrm{~dB}$ reading at 25.7 Vpk . Equivalent power level is 20.6 W , or 43.1 dBm VU 0 dB reading at 19.4 Vpk . Equivalent power level is 11.8 W , or 40.7 dBm $\mathrm{VU}-1 \mathrm{~dB}$ reading at 16.35 V pk. Equivalent power level is 8.4 W , or 39.2 dBm VU -3.1 dB reading at 11.6 Vpk . Equivalent power level is 4.2 W , or 36.2 dBm VU -5.9 dB reading at 7.9 Vpk . Equivalent power level is 2.0 W , or 33 dBm VU -16 dB reading at 3.07 Vpk . Equivalent power level is 0.3 W , or 24.8 dBm
ref +3.5 dB
ref +2.4 dB
ref 0 dB
ref -1.5 dB
ref -4.5 dB
ref -7.7 dB
ref -15.9 dB

4. Design

4.1 Input 12AX7 microphone stages

Input $12 \mathrm{AX7}$ stage, $\mathrm{B}+=260 \mathrm{~V}$; $\mathrm{Va}=190 \mathrm{~V}$; Rk=2k2; $\mathrm{Ia}=0.47 \mathrm{~mA} ; \mathrm{RLdc}=220 \mathrm{k}$.

4.2 PP Output Stage

Original design for 7027A could have common cathode current up to $80+80 \mathrm{~mA}$, based on 150 mA heater current and extra 10 mA for 1 k 5 . 7027A max dissipation is 35 W , so with 28 V cathode bias, and $395 \mathrm{~V} \mathrm{~B}+$, the max anode current is 95 mA , so reasonable to operate at 85% max dissipation. Datasheet indicates 5k PP loading is appropriate for cathode bias with screen rail = B+.

Alternatives to 7027A are limited by max heater winding current rating, which is unknown, but is at least $2 \times 0.9=1.8 \mathrm{~A} .0 .9 \mathrm{~A}$ heater options are 6 L 6 GC and 7581 A , where 6 L 6 GC is 30 W anode dissipation but has same class AB1 fixed bias 450V-350V output stage ratings as 7027A.

The max design output valve bias current allowed is dependent on the maximum recommended plate dissipation of $30 \mathrm{x} 0.8=24 \mathrm{~W}$ for 6L6GC: $\operatorname{Ibias}(\max)=\mathrm{Pd} / \mathrm{Vb}=24 \mathrm{~W} / 370 \mathrm{~V}=65 \mathrm{~mA}$. VS1 drop across OPT is $\sim 0.07 \mathrm{x} 100=7 \mathrm{~V}$. Max diss with screen is 35 W .

The heater string may need series or parallel padding resistors to get desired bias current for final setup of screen voltage. Parallel Zener can be used for constraining 12AX7 heater voltage to say $+5 \%(26.5 \mathrm{~V})$. Effective cathode resistance is circa $26 \mathrm{~V} / 0.15 \mathrm{~A}=175 \Omega$.

Initial cold 12AX7 heaters cause turn-on stress of output stage valves from low bias voltage, as cold heater string resistance is about 26Ω compared to operating resistance of 175Ω, and so initial cathode bias is about 15%. The likely surge current through the cathodes is less than a typical application of heater voltage from a transformer secondary winding, so the 12AX7 heaters likely take longer to warm up. This could be alleviated by using an appropriate NTC due to its high cold resistance. NTC working current would be about 150mA, so NTC-200D7 (or MF72) has a max current rating of 0.2 A (so 150 mA is 75%) and a min hot resistance of circa 12Ω, with a cold resistance of 200Ω. Initially the output stage cathodes would be slightly cold biased, so the warmup current available to the 12AX7 heaters is effectively current limited.

The NTC idles at 4.4 V for $136 \mathrm{~mA}(32 \Omega, 0.6 \mathrm{~W})$ with heater string at 20.8 V and cathodes at 25.2 V . To maintain the same bias voltage of $\sim 25 \mathrm{~V}$, but increase heater voltage, a 1 k 2 in parallel with heaters draws 20 mA more through NTC to lower its voltage to 3.4 V , and a 6 R9 is added in series with total.

If the 12AX7 are not fitted, or a heater circuit open-circuit fault occurs, then the output stage valve cathodes can float high and stress the heater-cathode interface, so a 150 V Zener is connected from cathode to gnd for protection.

4.3 Powering

Mains fuse reduced from 1.5A to 1A, with about 0.4A at idle.
Doubler rectifier with 140 mA hot load on 400 V VS1. Max anticipated continuous VS1 load current about 160 mA . Continuous fuse current about 570 mArms at idle when located in series with winding. IEC60127-2 630mA Time-delay fuse, as max continuous winding current shouldn't exceed 630 mArms for long durations. A bolted short load or short on the plate side of the OPT could cause a current level of 10 x fuse rating, and fuse would blow in under 0.3 sec . A loss of bias on the output stage valves $(\mathrm{Vg}=0 \mathrm{~V})$ could cause a current level up to 5 x fuse rating and fuse may need up to 2 s to blow.

Simulate period in PSUD2	20 ms	40 ms	100 ms	500 ms	continuous
Simulated RMS current	2.9 A	2.2 A	1.6 A	0.85 A	0.63 A
Multiplier (based on 0.63A fuse rating)	4.6	3.5	2.5	1.4	1
IEC60127-2 Time-delay min limit multiplier	10	~ 7	~ 4.8	~ 2.9	1

Capacitor ripple current about 400mArms max. Physically smaller 47uF 250V caps have low ripple current ratings (270 mA Yageo SH; 390mA Samwha SG; 240 mA Rubicon YXA), but can be well above 400 mA . Frequency is 50 Hz and ripple current multiplier may be down to $x 0.75$. The DELTEC RM is large at $40 \times 17 \mathrm{~mm}$ and has 105 C rating.

Diode continuous rms current at idle is 405 mA , so use 2x UF4007 in parallel.

4.4 Output level indicator

The original VU meter was disconnected.
The VU meter was included in a half-wave rectified and filtered circuit, with a Zener-resistor based series resistance designed to provide a nominal dBm reading with 0 dB mark at 12 W in to 16 ohm resistive load. 3 V 6 zeners were used to soften the current-voltage curve around their knee region.

4.5 Monitor Speaker

Monitor speaker is 15Ω and connected through 120Ω to $100 \Omega 2 \mathrm{~W}$ WW front panel pot wiper, with return via a contact on the external monitor socket. The pot is connected across the 60Ω (BLK) to 120Ω (OR) taps, which is 11Ω nominal tapping. The original wiring appears to be modified.

The max pot current rating is $\sqrt{ }(2 \mathrm{~W} / 100 \Omega)=140 \mathrm{mArms}$. The 50Ω feedback winding has a max prospective voltage of 35 Vrms . The min loading of any pot/speaker configuration needs to exceed $250 \Omega 5 \mathrm{~W}$ to keep pot current under 0.14A.

Modification:

- For simplicity, the feedback 50Ω winding was connected to the 100Ω pot through a 560Ω 2 W series resistor, and the wiper connected to the external speaker socket, with a socket contact to connect the internal speaker. With pot at min, the 660Ω loading of the feedback winding could dissipate up to 0.6 W .

4.6 Maintenance / setup

Female DB9 on the rear panel used to sense Common cathode, VS1/100, VS2/100, and NTC, with respect to 0 V ground, and V3 and V4 cathodes wrt common cathode through 10R sense resistors.

AWA PA1003 25W PA AMPLIFIER

 AL4518-modified

Title

